题目链接:2367. 算术三元组的数目 - 力扣(Leetcode)
题目描述:给你一个下标从 0 开始、严格递增 的整数数组 nums 和一个正整数 diff 。如果满足下述全部条件,则三元组 (i, j, k) 就是一个 算术三元组 :
i < j < k ,
nums[j] - nums[i] == diff 且
nums[k] - nums[j] == diff
返回不同 算术三元组 的数目。
这是一道easy级别的题目,看到这道题,第一反应是暴力破解,即一个三重循环求解,但是这种方法时间复杂度来到了O(n3);
第二个想到的是类似于1. 两数之和 - 力扣(Leetcode)中的哈希表法
class Solution {
public:
int arithmeticTriplets(vector<int>& nums, int diff) {
unordered_set<int> hashSet;
for (int x : nums) {
hashSet.emplace(x);
}
int res = 0;
for (int x : nums) {
if (hashSet.count(x + diff) && hashSet.count(x + 2 * diff)) {
res++;
}
}
return res;
}
};
时间复杂度位O(n),空间复杂度为O(n);
哈希表的作用是便于查找,而看到题目中给出的数组为有序数组,因此想到可以使用二分查找,这样就不需要额外空间,同时时间复杂度不会太高;
class Solution {
public:
bool find(vector<int>& nums,int left,int target){
int right=nums.size()-1;
int mid;
while(left<=right){
mid=(left+right)/2;
if(nums[mid]==target){
return true;
}
else if(nums[mid]>target){
right=mid-1;
}
else{
left=mid+1;
}
}
return false;
}
int arithmeticTriplets(vector<int>& nums, int diff) {
int n=nums.size();
int res=0;
for(int i=0;i<n;i++){
if(find(nums,i,diff+nums[i])&&find(nums,i,2*diff+nums[i])){
res++;
}
}
return res;
}
};
第四种方法就是官方题解给出的三指针法:
class Solution {
public:
int arithmeticTriplets(vector& nums, int diff) {
int ans = 0;
int n = nums.size();
for (int i = 0, j = 1, k = 2; i < n - 2 && j < n - 1 && k < n; i++) {
j = max(j, i + 1);
while (j < n - 1 && nums[j] - nums[i] < diff) {
j++;
}
if (j >= n - 1 || nums[j] - nums[i] > diff) {
continue;
}
k = max(k, j + 1);
while (k < n && nums[k] - nums[j] < diff) {
k++;
}
if (k < n && nums[k] - nums[j] == diff) {
ans++;
}
}
return ans;
}
};
作者:力扣官方题解
链接:https://leetcode.cn/problems/number-of-arithmetic-triplets/solutions/2200026/suan-zhu-san-yuan-zu-de-shu-mu-by-leetco-ldq4/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。